
Using BibTEX

David Young
young@maths.anu.edu.au

May 15, 2002

Contents

1 Introduction 2

I The Basics 3

2 Doing it manually 3

3 Why we should use BibTEX 4

4 The basic ingredients 4

5 Different styles 7

6 The format of the .bib file 8
6.1 Entry types . 9
6.2 Name considerations . 11
6.3 Multiple names . 13
6.4 Titles and capitalization . 13
6.5 Dealing with LATEX commands 14

II Nifty things 14

7 Cross-references 14

8 Abbreviations and preambles 15

9 Maintaining and updating your database 17
9.1 showkeys and showtags . 17
9.2 biblist . 18
9.3 Other tools . 18

1

10 Other useful packages 19
10.1 Changing the way citations appear 19
10.2 Multiple bibliographies in one document 20

11 Creating and editing style files 21
11.1 makebst . 23

12 If BibTEX can’t get it perfect for you . . . 24

1 Introduction

BibTEX is a companion program to LATEX, and was written by Oren Patashnik.
It was written to easily generate bibliographic reference lists for use with LATEX
in a flexible way.

This course will go through some of the basics of using BibTEX with LATEX,
and will also (towards the end) go through a few of the niftier things you can
do with BibTEX and related packages. I’ll give suggestions of things to muck
around and do to explore BibTEX a little in boxes. Of course, feel free to try
out anything you want!

(One of the things to remember about BibTEX is that there’s no easy way
to remember everything. What’s best is to be familiar with a lot of things that
you’ll find useful, and know where to find information about them when you
can’t remember everything. This is why I do encourage you to play around
with stuff so you know what’s going on, particularly for when you’re not getting
exactly what you want!)

There are several very good sources of information about BibTEX. Ap-
pendix B of Leslie Lamport’s book LATEX: a Document Preparation System
[Lam94] is devoted to BibTEX. For an updated and augmented version of this,
take a look at Chapter 13 of Goossens et al. The LATEX Companion [GMS94].
Other good sources of information about all things TEX, including LATEX and
BibTEX are the TEX Users’ Group: http://www.tug.org/ [TUG], and the
Comprehensive TEX Archive Network: http://www.ctan.org/ [CTAN].

It pays to know where your LATEX distribution resides on your system, be-
cause there are a lot of interesting packages, styles and so on hidden there. On
this system, the user files for the distribution are based at

/usr/local/teTeX/share/texmf/

but it may be different on different systems. If I refer to any files, you may
have to change the initial part of the path so that it matches your local LATEX
distribution. One important file I will mention immediately is the file

/usr/local/teTeX/share/texmf/bibtex/bib/base/xampl.bib

which is a good example of the many types of entries in a .bib file. Feel free to
use this when mucking around. Also the file

/usr/local/teTeX/share/texmf/doc/bibtex/base/btxdoc.dvi

2

gives a good introduction to BibTEX.
Some other files which you might find useful can be found at http://wwwmaths.anu.edu.au/~young/bibtex/,

or in /students/s3269901/bibtex on the machine bohm: notes.pdf is this file
in PDF format, course.tex is the .tex file used to produce those notes, and
refs.bib is the bibliography database file that goes with it. Feel free to use
these to play around with different things, or use your own files.

Part I

The Basics

2 Doing it manually

It’s easy enough to create a bibliography yourself within a LATEX document
without using BibTEX, at least for small bibliographies.

The basic ingredients are as follows:

• a \begin{thebibliography} command with an argument which is a piece
of text the same width as the widest item label in the source list. For
example, if you have fewer than 100 entries and they are labelled with
numbers, \begin{thebibliography}{88} should do fine. In the article
document class the output reference list is labeled “References”, while in
the book and report classes it is labeled “Bibliography”.

• a list of references sorted as you want them to appear. Each should begin
with a \bibitem command, the argument of which is the citation key of
that entry. In addition, an optional argument can be used to change the
label as it appears in the output. For example, \bibitem{COMPANION}
or \bibitem[Lam94]{LaTeX}. What follows should be what you want to
appear in the bibliography, formatted as you want it to appear.

• an \end{thebibliography} command.

In your text you can include \cite commands whose argument is one (or
more) of the citation keys. \cite also has an optional argument, which can be
used, for example, to give a range of pages.

The argument of the \bibitem command is needed, even if you don’t want
to refer to that item — if you don’t include it, LATEX will take the first letter
of that item as the citation key, and so that letter will be missing from your
output!

Within your entries you can provide a number of \newblock commands. This
breaks the information up into blocks which are formatted differently depending
on whether the LATEX compiles the document with the openbib option set, that
is, using this as the optional argument to the \documentclass, for example

\documentclass[openbib]{article}.

3

If it is set, a \newblock will start a new line which is slightly indented, otherwise
it has no effect.

If we use this method, on the first run-through LATEX won’t know what refers
to what, but will make a note of it in the .aux file. Then, on the second run
through it will use all the information gathered on the previous time through
to create the citations.

Create a file with some text, and include a short bibliography using the above
method, with \begin and \end{thebibliography} and \bibitems, and \cite
some of the entries (with and without the optional argument, and with multiple
keys as well). Also use \newblocks, and see how the formatting changes when
you use the openbib option for the document class.

3 Why we should use BibTEX

This is all well and good for small reference lists in a small number of files, but it
starts getting harder to manage when we need more references or need to write
more documents. Moreover, it is inherently inflexible – if we change our mind
about how we want the information presented, such as what should be put in
italics, or what data actually needs to be included, then we have to go through
and make all the changes by hand.

BibTEX is designed to be a middle-man for the bibliography generation
process, and do all the formatting each time every time, pulling the information
it needs from a possibly larger list we give it. Using BibTEX we don’t have to
make any final formatting decisions about our bibliographic data when we enter
it; this means that we never have to worry about converting a bibliography laid
out in one style to a different style. Moreover, we don’t have to worry whether
we’re actually using one consistent style, or slipping into several in the one file!
What’s more, rather than separately entering a reference list into each paper or
book we write, with its own formatting, we can keep one (possibly large) list
of all the references we ever use, adding to it when we need to, and creating
a different bibliography in a different format for each document we need using
this one list.

In summary we can:

• keep all our bibliographic data in one place (or more, if we feel like it) for
use in whatever LATEX files we need, if at all

• change the formatting style for each document with no more than changing
a \bibliographystyle command

• be sure that our style is consistent within each document

4 The basic ingredients

Essentially using BibTEX involves taking all the information that might be
needed for your references, putting them in a separate file, and then letting

4

BibTEX do the formatting for you. What it produces is actually in the \bibitem
format we would use if we were doing it ourselves.

The basic process is as follows. In your .tex file you’ll have included some
references with \cite commands. (Remember that this command has an op-
tional argument, and you can have more than one citation for a single \cite
command. Also, if you want a reference included in the bibliography without
being referred to use a \nocite command, or even \nocite{*}.) When you
need to refer to a new work, you’ll add its details fo a .bib file, in a format
that BibTEX will understand. At the end of your document (or wherever you
want the bibliography to appear) you’ll put the command \bibliographystyle
whose argument is the style you want, and the command \bibliography, whose
argument is the file or files where your bibliographic data is kept. (The list of
bibliographic data files needs to be separated by commas, with no whitespace
between names.)

When you first run LATEX on the file you’ll get warning messages something
like

LaTeX Warning: Citation ‘COMPANION’ on page 3 undefined on input line 62.

You’ll also get the warnings about other undefined references, like those pro-
duced with \ref commands. Running LATEX again will resolve these ones, but
not the citation warnings – the unresolved citations will appear in your output
as [?], and there will also be no bibliography.

At this stage LATEX will have listed in the .aux file the citations it came
across.

Run LATEX on a new .tex file once and have a look inside the .aux file and see
what LATEX has written.

Now, when we run BibTEX on our file, we will actually be running it on our
.aux file, rather than our .tex file. For the moment this is a moot point, as they
both have the same stem. BibTEX looks in the .aux file for what references it
needs to look out for, what file or files this information will be in, and for what
style it needs to use. Then it grabs the data from that file and formats it how
we’ve asked it. This stuff it will put in a .bbl file.

Run BibTEX on the .aux file LATEX produced above, and look at the format of
the .bbl file.

This file should have been formatted by BibTEX just like how we described
in Section 2, “Doing it Manually”.

When we run LATEX next it will incorporate this data in the reference list
at the end. It will also add to the .aux file the citation keys we have used, and
the labels that they refer to. We will need to run LATEX another time to get all
the \cite commands resolved, rather than showing [?]. This is what the

LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.

warning tell us.

5

You guessed it, run LATEX again and look at how the .aux file has changed
(what has been added to it).

To produce a fully-referenced document from, say, paper.tex, you thus need
to run four commands:

latex paper
bibtex paper
latex paper
latex paper

Each time you add or remove a citation, you’ll need to go through the whole
LATEX-BibTEX-LATEX-LATEXprocess again to get everything right.

Occasionally, such as if you’re submitting a paper electronically, you will need
your document to be self-contained. In this case we can still use BibTEX, but at
the last step we simply need to “copy-and-paste” the information from the .bbl
file into our .tex file in place of the \bibliographystyle and bibliography
commands.

In the end, each of the following files may have been used:

.tex the source file of the document

.aux the file LATEX produces which contains all the referencing information, and
which BibTEX reads to find out this information. It contains information
on what format to use, and where to find the bibliographic data. It also
contains a list of all the citations referred to (so that BibTEX knows what
to format), and a list of what stands for what (so it knows what to write
when it comes across a \cite command)

.bib the file or files that contain the bibliographic data – the list of papers,
books, and so one

.bbl the formatted output produced by BibTEX, containing a \begin{bibliography}
command, a whole list of \bibitems with the data, and an \end{bibliography}
command

.blg the BibTEX log file, containing any warnings or errors it generated, and
a list of all the internal BibTEX functions it used

.bst the bibliographic style file, containing information on how to format the
data BibTEX is given

The way the .aux file is used by LATEX to communicate with BibTEX is as fol-
lows. The command \bibliographystyle in our .tex file causes a \bibstyle
command to be added to the .aux file, which lets BibTEX know what format
it should produce its output in. The command \bibliography in the .tex
file causes a \bibdata command to be added to the .aux file to let BibTEX
know where to find its data. Moreover, the \bibliography command is where

6

LATEX inserts the data in the .bbl file. Any \cite or \nocite command causes
a \citation command to be added to the .aux file so BibTEX knows what
entries it needs to use.

Try running LATEX then BibTEX on a .tex file which contains a \bibliography
command which refers to a non-existent (or misspelled) .bib file.

5 Different styles

Bibliography styles are located in files that end in .bst (not to be confused
with document styles, part of TEX document formatting). You will generally
not write your own bibstyle, but you might on occasion need to edit one slightly
to get exactly what you want. However, usually you’ll find that you’ll be happy
with the files that are included standard as part of the LATEX distribution, or
that can be downloaded from [CTAN], or that particular journals or societies
will make available to you.

The style files themselves will in general not be located where your document
is, but in the bibtex directory in the LATEX distribution. However, BibTEX will
look first in the current directory, so if you do have a style file with the same
name as a standard one but which is different it will use this first. Note, however,
that this will just end up being confusing (since your .tex file seemingly refers
to the standard style), and may breach copyright rules listed at the top of the
style file.

Since there are plenty of styles to be found it pays to look around and try
each of the types until you find one you’re happy with and which meets all your
requirements. (Like I said above, some journals will actually provide you with
a style file to meet their requirements.) The main ones are

plain entries are sorted alphabetically and are labelled with numbers.

unsrt the same as plain except entries appear in the order in which they were
first cited.

alpha entries are sorted alphabetically, and the labels are made from the author’s
or authors’ (or editor’s) name and the year of publication, like [GMS94].

abbrv the same as plain except names, month names and journal names are
abbreviated.

Some of the (non-standard) BibTEX styles modify the citation and bibliog-
raphy list items compared with normal LATEX, so a corresponding LATEX package
needs to be used in these cases (with a \usepackage command in the preamble).

On this system, the bibliography styles are located in directories off

/usr/local/teTeX/share/texmf/bibtex/bst/

7

Try using each of these styles on a given bibliography, for example course.tex,
and even try some of the other styles available. Have a look at how the labels
change, and also how the entries in the reference list change as well. Also try
using the name of a non-existent style, and see what BibTEX tells you.

6 The format of the .bib file

The first thing I should say is that unlike LATEX, BibTEX does not care about
cases. I’ll remind you of this when it’s important.

Now the best way to explain the format of entries in the .bib file is with an
example:

@article{hownotto,
title = "How Not to Write Articles",
AUthoR = {Young, David S.},
journal = "J. Not Important Research",
volume = 1,
year = 2002,
pages = "2--3"

}

The first bit states that this entry is an article. There are various entry types
(I’ll get to them in a bit), but you must start each with the @ symbol. After
the entry type we put a left brace (as above) or (. Whatever we put here has
to be matched at the end of the entry, though. It’s usually a good idea to use
one consistent style, but in the rest of this document I’ll use both, to remind
you that both are valid.

The hownotto is the citation key. If we want to refer to this article somwhere
in our paper we would use \cite{hownotto}. In fact, BibTEX doesn’t care
about cases, so we could use \cite{HowNotTo} instead if we wanted. However,
LATEX does care about cases, so if we did this we would have to do it the same
everywhere it occurred in our file, else we will get two different \citation
entries in our .aux file, and BibTEX will complain about a “Case mismatch
error”. There are various schemes for coming up with citation keys; the Harvard
system takes the author’s surname (in lower case) follwed by a colon, then the
year of publication. It’s a good idea to find a scheme you’re happy with and
settle on it.

After the citation key, we put a comma. Then it’s time for the fields.
I’ve given the entry above six fields. There are different fields for the different

entry types, some of which are optional. A field consists of its name (for example,
title), followed by an “=” character, followed by the text. There can be spaces
around the “=” if you want, but it’s not required.

The text itself is a string of characters, with no unmatched braces (and here
this includes \{ and \}), which is surrounded by a pair of braces or a pair of "
characters. (Again, it’s probably a good idea to stick to a consistent style, but

8

I’ll chop and change.) Actually, if the text is a number we don’t need the braces
or quotation marks around it, for example with the year 2002 above. However,
if the field is a numeric range, for example the pages 2--3 above, then the text
is not numeric and must have the braces or quotation marks. (And remember,
the information you give is formatted then passed on to LATEX, which is why we
have the two hyphens in te numeric range.)

We separate the fields by commas.
BibTEX is pretty easy-going when it comes to spaces, which includes end-

of-line characters and tabs. Thus there is no need for the exact formatting of
the entry above, and we could add spaces around " symbols and commas if we
like. However, it’s a good idea to use a personal style you’re happy with and
stick to it — you’re less likely to make mistakes, and if you do make a mistake
it’ll be easier to find it.

As I said before, BibTEX does not care about cases. The field AUthoR shows
this – any capitalization of it would work. Once again, it’s a good idea to find
a personal style and stick with it. (A lot of people capitalize the field type to
make it stand out, for example AUTHOR = "Young, David Scott". Personally,
I think it’s a good idea, but I never actually used it for some reason.)

When BibTEX encounters a key which is the same as one which it has already
come across, it will complain, and tell you:

Repeated entry---line 47 of file refs.bib
: @article{hownotto
: ,
I’m skipping whatever remains of this entry

One last thing – the % character is not a comment character inside a .bib
database file, unlike a LATEX .tex file. However, BibTEX is pretty smart, and
not recognizing it as a valid command will usually ignore it, at least between
entries. Withing entries you may get an error message, however.

6.1 Entry types

This is where “play around with something until you’re happy with it” comes
into play. When you’re entering something into a database you need to decide
what type of entry it is, which will decide how it is dealt with by BibTEX. SOme
things, like journal articles or books, are obvious; others take a bit of playing.

Each entry has three types of fields:

required means that if the field is left out BibTEX will give you an error message,
and the entry will probably not be formatted correctly. Chances are if the
field doesn’t make sense you should choose a different entry type.

optional means it will be used if you include it, but you won’t get an error if you
don’t.

ignored anything else. BibTEX will not include any information that is not required
or optional. Thus, if you want to include a short note for an entry, you

9

could add the field mynote, say, and BibTEX would ignore it. On the other
hand, if you mistype a field name, say jurnal, BibTEX will ignore that
field, and will possibly complain that required information is missing.

The following list gives the entry types and the required and optional fields
for each, along with a short description:

article An article from a journal or magazine. Required: author, title, journal,
year. Optional: volume, number, pages, note.

book A book with a publisher. Required: author or editor, title, publisher,
year. Optional: volume or number, series, address, edition, month,
note.

booklet A work that is printed and bound, but without a named publisher or spon-
soring institution. Required: title. Optional: author, howpublished,
address, month, year, note.

conference The same as inproceedings.

inbook A part of a book, usually untitled. It may be a chapter, section etc.
and/or a range of pages. Required: author or editor, title, chapter
and/or pages, publisher, year. Optional: volume or number, series,
type, address, edition, month, note.

incollection A part of a book with its own title. Required: author, title, booktitle,
publisher, year. Optional: editor, volume or number, series, type,
chapter, pages, address, edition, month, note.

inproceedings An article in a conference proceedings. Required: author, title, booktitle,
year. Optional: editor, volume or number, series, pages, address,
month, organization, publisher, note.

manual Technical documentation. Required: title. Optional: author, organization,
address, edition, month, year, note.

mastersthesis A master’s thesis. Required: author, title, school, year. Optional:
type, address, month, note.

misc When nothing else fits.... Required: none. Optional: author, title,
howpublished, month, year, note.

phdthesis A Ph.D. thesis. Required: author, title, school, year. Optional: type,
address, month, note.

proceedings The proceedings of a conference. Required: title, year. Optional:
editor, volume or number, series, address, month, organization, publisher,
note.

techreport A report published by a school or another institution, often numbered
within a series. Required: author, title, institution, year. Optional:
type, number, address, month, note.

10

unpublished A document with an author and title, but not formally published. Re-
quired: author, title, note. Optional: month, year.

Have a play around and see how the different entry types get formatted. For
example, how does inbook differ from inproceedings?

One other field is available for all these entry types: key. For some biblio-
graphic styles we can use this to tell BibTEX a more appropriate string to use
to generate the citation label than the author, editor or organization fields. For
example, if we had

organization = "School of Mathematical Sciences",
key = "SMS"

then we would produce something like [SMS02], which is more acceptable than
[Sch02]. It is also used for some entry types without an author or editor to
help BibTEX decide on sorting.

Don’t be misled by the chapter field — it indicates any sectional unit, such
as a “Section” or “Part”, not just a chapter. To change from the default output
of “Chapter” include a field entry like type = "Section".

In fact, don’t be misled by any of the field names – they are meant to be
functional names, and won’t necessarily match up exactly with your particular
entry every time, but just so long as they format cirrectly you should be fine.

The edition field should be entered as an ordinal word with a leading
capital, for example Second. The capital will be lowered if necessary by the
style file.

The year field does not have to consist solely of a four-digit number, but
it must end with a four-digit number. For example, year = "circa 2001" is
allowed.

Finally, since a field which BibTEX doesn’t recognize is ignored, you can add
your own comments to bibliographic entries, such as by using a field

mycomment = "This paper is by my supervisor, so I have to refer to it"

Go ahead and add some entries to a database. Play around with entries, delib-
erately misspelling the names of required or optional fields, for example jurnal.
See how the output is affected, and look at what errors or warnings BibTEX
gives you. Finally, some of the entry types have for example author or editor
— try adding both.

6.2 Name considerations

If you enter a name as a string as you would normally say it, such as “David S.
Young” or “Linus van Pelt”, BibTEX will have to try to work out which part is
the surname, for example to work out how to sort or to give it a label. It will
parse (break up) the list of words into three groups:

11

• the von part will begin with the first non-capitalized word, and will include
everything from then up to (but not including) the next capitalized word.
This part may be empty.

• the Surname consists of everything after the von part. If there is no von
part then the surname is just the last word.

• the Firstname will be everything up to the von part or the surname (as
worked out above).

For example, David S. Young will be grouped as “David S.”, nothing, then
“Young”, whereas Lucy van Pelt will be grouped as “Lucy”, “van”, then
“Pelt”. BibTEX is actually quite smart, and will occasionally change spaces
into unbreakable spaces (which use the LATEX command ~), for example next to
initials.

BibTEX’s guesswork usually works quite well, but sometimes can be out-
smarted by tricky names.

To deal with tricky surnames, you can enter names in the form von Surname, Firstname.
This will cope with, for example “Jon Bon Jovi” (which would be entered as
Bon Jovi, Jon). It will also work for names that BibTEX would normally
have no trouble with, such as “David S. Young” (which would be entered as
Young, David S.).

We can use the same method to deal with tricky “firstnames”, such as names
which include non-capitalized parts. Say someone’s name was “Giulio de Giorgi
Caranti”, where their surname is “Caranti”, and “de Giorgi” is their middle
name, so part of their first name. Then we would enter Caranti, Giulio de Giorgi.

People who use a suffix like “Jr” or “III” generally precede it with a comma.
To accommodate that, enter their name in the form von Surname, affix, Firstname,
such as Nash, Jr, John Forbes to get what you’re after. If someone does not
use a comma, simply include the suffix with the surname, enclosing both with
braces: {Young Jr}, David.

BibTEX knows how to deal with hyphenated names, in particular how to
abbreviate them.

Sometimes we want the von part to be capitalized, but still to be treated as
the middle bit (for example, in sorting). Here we need to trick BibTEX. For
example, if we enter James {\uppercase{d}e La} Porta BibTEX considers
the middle “De La” part to be the von part, since it does not understand the
LATEX uppercase command and only sees the lower-case de. Then, for example,
if we abbreviate the name, we get J. De La Porta, as different from the J. D. L.
Porta which we would otherwise have gotten.

Finally, you will occasionally find yourself referring to someone whose sur-
name comes first, so you will want them to be sorted in the reference list (and
have a label coming from) the first-listed name. To “trick” BibTEX here, en-
close the whole name in braces, as if their name was just one big surname; and
entry with

author = "{Mao Zedong}"

12

will appear between entries with authors Gus Logie and Keith Miller, and
will be labelled something like [Mao70] (in the relevant bibliographic styles).

In summary, there are three ways you can enter names:
"First von Last" e.g. {James van der Beek}
"von Last, First" e.g. "van Halen, Eddie"
"von Last, Jr, First" e.g. {di Caprio, III, Leonardo}

6.3 Multiple names

When entering multiple names, separate them with and, even if there are three
or more. This way BibTEX will know what the surnames are in order to form
the correct label and sort properly:

author = "Goossens, Michel and Mittelbach, Frank and Samarin, Alexander"

If you have more authors or editors than you want to type, end the list of
names with and others; this will generally be converted to “et al.” by most
bib styles.

If there is an occurrence of “and” which you don’t want BibTEX to treat
as a name separator, but which actually forms part of a name – for example,
“Young and Jackson, Inc.” – then enclose everything which must stay as one
unit in braces:

EDITOR = "Toohey, Red and {Young and Jackson, Inc.}"

This trick can be used to prevent the breaking up of names that shouldn’t
be broken up:

author = {{Australian Bureau of Statistics}}

If this is entered without the extra pair of braces, would normally be considered
to be by someone whose surname is “of Statistics” and whose firstnames are
“Australian Bureau”, and would be sorted and labelled accordingly.

6.4 Titles and capitalization

The bibliography style will decide whether a title should be capitalized; usually
titles of books are capitalized, titles of articles are not. The way to enter a title
is as if it would appear if it would be capitalized:

TITLE = "The Queen of the Night"

This is because BibTEX will only change capitals to lower case if they are
not needed, but not the other way around.

Sometimes you will have a capital that must remain in a title, for example a
proper name. In this case enclose the letter in braces; you can do just the letter
itself, or the whole word:

TITLE = "Lampoons of {L}amport"
TITLE = "Lampoons of {Lamport}"

13

6.5 Dealing with LATEX commands

BibTEX sometimes can get confused by LATEX commands, such as those that
generate accented characters. So that it doesn’t get confused, surround the
character by braces so that BibTEX knows it doesn’t have to worry about it:

"Kurt G{\"{o}}del"

However, note that the braces must not be enclosed by more braces, and the
backslash must be the first character inside the braces. This then interferes with
using the braces to stop BibTEX converting characters to lower case, though!
For example, if the above was part of a title field we would have to enter:

TITLE = "The Life of {Kurt} {G}{\"{o}}del"

Part II

Nifty things

7 Cross-references

Cross-referencing is another convenient way to avoid typing and ensuring that
all data is consistent.

Suppose that you cite several parts of another cited work, for example dif-
ferent papers in the same conference proceedings, or different parts of a book
which have different titles. Then you can make one entry for the larger work and
refer to that entry in the entries for the included works by using the crossref
field. Any fields which are already in the larger work do not then need to be
given for the others if they are the same. However, every field that is required
must be in one of the two works.

@INPROCEEDINGS{young:unimportant,
author = "Young, David S.",
title = "Some Unimportant Friends of {L}eslie {L}amport",
pages = "333--334",
crossref = "unimp:conf"

}
...
@PROCEEDINGS{unimp:conf,
title = "Unimportance: 1st Annual Conference on Trivia",
booktitle = "Unimportance: 1st Annual Conference on Trivia",
editor = "One, N. E.",
year = "2000"

}

There are three things to note about cross-referencing. Firstly, a cross-
referenced entry (like the proceedings above) must occur after any entry that

14

refers to it. Secondly, a cross-referenced entry may not cross-reference another
entry. Finally, if an item is cross-referenced by at least two other entries then
it will automatically appear in the reference list, even if it hasn’t been \cited.

Here we have included the booktitle field in the @PROCEEDINGS even though
it is not needed there because it will be needed in everything that refers to it.
It is happily ignored in the reference to the proceedings itself.

8 Abbreviations and preambles

Sometimes you will have a string that you find yourself using often, and you
wish you could just abbreviate it. For example, if you were writing a paper on
things which aren’t very important to anyone, you might find yourself entering

journal = "Journal of Unimportant Research"

over and over again. You can define an abbreviation for the text string that you
can use in its place. If you defined JUR as an abbreviation for Journal of Unimportant Research
then the above field entry could be given instead as

journal = JUR

Note that we do not surround the name of the abbreviation by quotation
marks or braces, else BibTEX will think it is the title! The name of an abbrevia-
tion has to start with a letter and cannot contain a space or any of the following
characters:

" # % ’ () , = { }

Some abbreviations are predefined by the bibliography style. For example,
societies like to include abbreviations for all their journals. In addition, nearly
every style contains abbreviations for the months using three letter abbrevia-
tions. For this reason, when entering a month you should use this three-letter
abbreviation instead of the month itself, for example

month = apr

instead of

month = "April"

To define your own abbreviation, use the @string command:

@string{JUR = "Journal of Unimportant Research"}

The outermost braces can be replaced with parentheses, while the quotation
marks may be replaced with braces. Moreover, since BibTEX ignores case, the
above is equivalent to

@string{jUr = "Journal of Unimportant Research"}

15

The @string command must come before the first place the abbreviation is
used, but other than that it can come anywhere before or between entries. The
obvious place to put them then is at the start of the .bib file. You can even
create a .bib file which just contains abbreviations, and make sure it is the first
file listed with the \bibliography command.

Also note that a @string command in a .bib file overrides anything defined
in the bibliographystyle, so you can redefine an abbreviation such as Apr if
you’re not happy with it.

We can also concatenate abbreviations. For example, suppose that the above
journal has a second series. Rather than having to type out “Journal of Unim-
portant Research, Series 2”, or defining a new abbreviation for it, we can instead
concatenate the extra bit onto the previously-defined abbreviation with a #:

journal = jur # ", Series~2"

An example abbreviation file is one produced by the American Mathematical
Society:

/usr/local/teTeX/share/texmf/bibtex/bib/ams/mrabbrev.bib

In a similar vein is the BibTEX command @preamble. This is especially
useful to pass to LATEX any LATEX commands that need defining. The argument
of the @preamble is a set of strings, concatenated by the # character, each of
which is a valid LATEX command. For example

@preamble{ "\providecommand{\sortignore}[1]{} "
"\providecommand{\swapthings}[2]{#2#1} " }

will end up providing two commands to LATEX.
The first command, \sortignore, is actually an example of a very handy

trick to get BibTEX to sort things properly. Suppose that you had two volumes
of a book, but from different editions — say the first volume was a 1990 edition
of a 1986 original, but the second volume was first published in 1988 and hasn’t
had a second edition. Ideally we would like the second edition to occur later
than the first in a reference list, but BibTEX will usually sort by year, putting
the second volume first. To get past this, in our .bib file we could have

volume = 1, year = "{\sortignore{1986}}1990"
...
volume = 2, year = "{\sortignore{1988}}1988"

LATEX will happily ignore the arguments to \sortignore, producing “1990” and
“1988” in the output as we want. BibTEX, on the other hand, will ignore the
LATEX command \sortignore but not its argument when sorting, and will try
to sort them according as 19861990 comes before 19881988, which is what we
want.

16

9 Maintaining and updating your database

Well, you’ve got a file, or a whole lot of files, which contain your bibliographic
data. You’ll find that a lot of electronic sources of bibliographic information can
give you that information in BibTEX format; for example, the on-line mathe-
matical reference and review database MathSciNet [MSN]. Thus, we can happily
keep our bibliographic database expanding.

The most obvious thing we need to do is keep track of what citation keys
refer to what.

It’s easy enough to make a LATEX document which will output all of our
references, simply by putting a \nocite{*} command in a file which refers to
all of our bibliographic files:

\documentclass{article}
\begin{document}

\nocite{*}

\bibliographystyle{alpha} % or whatever
\bibliography{abbrev,refs,xample,misc} % again, or whatever

\end{document}

However, this will not tell us what citation key we actually chose for each of
these, and depending on what we were thinking, they could be counter-intuitive,
and not easily gleaned from the reference itself!

To fix this problem, there are a few packages that can be used.

9.1 showkeys and showtags

I like to combine the above approach with the package showtags. This puts a
box above each item in a reference list whioch contains the citation key used for
that item. In our case, we can combine it with our complete bibliographic file:

\documentclass{article}
\usepackage{showtags}
\begin{document}

\nocite{*}

\bibliographystyle{alpha} % or whatever
\bibliography{abbrev,refs,xample,misc} % again, or whatever

\end{document}

A similar package is showkeys. This package (which should also come with the
LATEX distribution — if not, check out [CTAN]) can be used more generally to
keep track of what you are \citeing, \labeling and \refing throughout your

17

document. Whenever you use one of these commands, it will include in your
output a small box with the relevant label.

Try each of these packages on a LATEX file, even if it doesn’t contain all of your
references, just to see their effect.

The showkeys package also has optional arguments notref and notcite
which can be used to turn off the printing of the labels-in-boxes near \ref and
related commands, or \cite and related commands. For instance,

\usepackage[notref,notcite]{showkeys}

will produce the boxes only adjacent to \label and related commands, which
does include the entries in the reference list. The package should have docu-
mentation on your system — look in the folder

/usr/local/teTeX/share/texmf/doc/latex/tools/

for documentation on showkeys and other useful LATEX packages.

9.2 biblist

This package works much like showkeys and showtags, in that it produces a
reference list with the citation keys shown. It is formatted slightly different, of
course.

If you \usepackage{biblist}, your \documentclass must be article, and
you cannot use twocolumn or multicol. With this package, you do not need
to include the \nocite{*} command, as by default all the entries are listed; if
you do use explicit \nocite commands, only those entries will be listed:

\documentclass{article}
\usepackage{biblist}
\begin{document}

\bibliographystyle{alpha} % or whatever
\bibliography{abbrev,refs,xample,misc} % again, or whatever

\end{document}

Here you need only run LATEX, BibTEX, LATEX. (The final LATEX run which is
usually needed is not needed here. Of course, it doesn’t hurt anything if you
accidentally do it out of habit!)

9.3 Other tools

The following tools are less commonly available, but you might find them useful
if you have them. For more information about them, or to obtain them, check
out [CTAN].

18

aux2bib is a Perl script which, given an .aux file and the .bib files it refers to,
creates a portable .bib file.

bibkey is a C-shell script that searches .bib files for entries containing a given
keyword.

bibview can be used with an X-window graphics terminal to manipulate BibTEX
databases.

looktex is a generalization of bibkey.

makebib makes an exportable .bib file from a given set of .bib files and an optional
list of citations.

printbib creates a .dvi file from a .bib file, sorted by citation key.

10 Other useful packages

10.1 Changing the way citations appear

The default way for citations to appear is as a comma-separated list enclosed
in square brackets. This is controlled by the internal LATEX command \@cite,
which is defined as follows:

\renewcommand{\@cite}[2]{%
[{#1}\ifthenelse{\boolean{@tempswa}}{,#2}{}]}

(Here the temporary Boolean variable \if@tempswa is set to true if the \cite
command has an optional argument.) It is possible to redefine this by hand, for
example to get exponent-like (raised) references:

\renewcommand{\@cite}[2]{%
{$^{#1}$\ifthenelse{\boolean{@tempswa}}{,#2}{}}}

If you’re confident, you can try redefining \@cite to get your desired effect.
However, there are packages which already exist which can make the job

easier for you:

• The cite package can collapse a list of three or more consecutive num-
bers into a range, for example [5,6,7,9,6,4] becomes [5–7,9,4,8]. An extra
command \citen gives the numbers without the brackets, for example
“See also ref.~\citen{companion}”.

• The citesort package is like the previous package except it sorts the ref-
erences before collapsing (removing duplicates), so the previous example
becomes simply [4–9].

• The overcite package is like cite, but displays the citations as superscript
numbers which are compressed (but not sorted like citesort)

19

Some bibliography styles define supplementary commands which are like
\cite but which format the entry differently. For example, the chicago style
has the following commands:
\cite full author list and year: (Goossens et al. 1994)
\citeA only full author list: (Goossens et al.)
\citeN full author list and year, for use in flowing text:

Goossens et al. (1994) state that
\citeyear year only, in parentheses

There are also commands to give abbreviated output: \shortcite, \shortciteA,
\shortciteN. In addition, each command has an equivalent without parenthe-
ses, obtained by appending NP to the name, for example \citeNP.

10.2 Multiple bibliographies in one document

Occasionally you will want to include multiple bibliographies in one document,
for example with conference proceedings with many articles, or parts of a book
with different authors. Unfortunately, with BibTEX multiple \bibliography
commands give you the same reference list each time, each containing all the
references from the document.

10.2.1 The chapterbib package

To use this package, you need to have included files with the LATEX \include
command. It is in these files that you are allowed to have \bibliographystyle
and \bibliography commands (with only a single \bibliography command
per file). Any occurrence of either of these commands in the root file will be
ignored.

If you want to have a \cite command in the root file, then you have to
provide a stand-alone bibliography within that file using the \thebibliography
command, as discussed in the “Doing it manually” section.

You compile a document using this package as follows:

1. Run LATEX on the root document, as you would normally. This will pro-
duce a .aux file for each of the \included files.

2. Run BibTEX for each \included file, that is, for each of the .aux files
produced by the previous step, to produce individual .bbl files.

3. Run LATEX on the root file again. . .

4. . . . and run LATEX on the root file again, as you would normally.

10.2.2 The bibunits package

This package can only be used (without modification) on Unix systems.
This package generates separate bibliographies for different specified units of

the text, chapters, sections, or bibunit environments, specially defined by this
package. It will separate the citations into separate files based on these units.

20

The command

\bibliographyunit[unit]

specifies for which document unit the reference lists will be generated — unit
can be either \chapter or \section.

If the optional argument is not given, the document units must be specified
as bibunits (see below). Any citation made between such units will appear in
the document’s global reference list.

In either case, the commands \bibliographystyle and \bibliography
specify the BibTEX style and files which are used by default in the specified
units. In each unit, these can be overridden by the commands \bibliographystyle*
and \bibliography*.

A bibunit is started with the command

\begin{bibunit}[style]

The style is optional, and specifies a style different from the default (if any).
The end of a bibunit is marked by a

\end{bibunit}

command. Somewhere within each bibunit there must be a

\putbib[bibtex-files]

command, specifying which bibliographic data files (.bib files) to use for that
bibunit. If the optional argument is not given, the default file or files are used.

When you first run LATEX on a file which uses the package bibunits, it gen-
erates a file filename.i.aux for each document unit, where i is the sequence
number of the unit. (This is why it will not work on many non-Unix systems.)

After this first run of LATEX, you must run BibTEX on each of these .aux
files. After this, run LATEX twice as per usual.

Try using chapterbib and bibunits.

The chapterbib is the easier of the two, as it is the most intuitive. On
the other hand, the bibunits package is more powerful and less restrictive (for
example, you do not need to have separate \included files).

11 Creating and editing style files

It’s probably best not to create a bibliographic style file from scratch, but you
might want to edit one slightly to get exactly what you want (if it doesn’t already
exist somewhere out there). Again, remember if you edit an existing file, you’ll
probably be required to change the name of the file to avoid confusion.

Let’s start with an example of something that you might want to do. Say
you were using a style that ou were perfectly happy with a given style except
for its habit of changing titles to lowercase for some entry types, such as article.

21

Looking at the .bst file, you notice that it starts with a list of allowed entries,
defined with an ENTRY command, then a list of names of integer variables, given
by INTEGERS, then a whole lot of definitions of functions, given by the command
FUNCTION. Among these is the command FUNCTION {article}, and you surmise
that the stuff immediately after this tells BibTEX how to format an article
entry. Looking through, it seems that format.title is responsible for the dirty
work done to title, and just having a quick look at FUNCTION {book}, we see
that this entry type indeed does not use the function format.title.

The function itself is defined earlier in the file by

FUNCTION {format.title}
{ title empty$

{ "" }
{ title "t" change.case$ }

if$
}

The "t" argument tells change.case$ to change everything to lowercase except
the first letter. If we change this function we should be happier; we change it to

FUNCTION {format.title}
{ title empty$

{ "" }
{ title } % modified from original

if$
}

with a little note to remind us what we’ve done. We’ll need to change the
functions format.edition, format.chapter.pages, format.thesis.type and
format.tr.number as well to be truly happy.

A lot can be gleaned about how BibTEX works just be looking at a style file.
Importantly, functions use the mathematicians’ “Polish notation” — arguments
are written immediately preceding a function. For example,

edition "l" change.case$ " edition" *

tells BibTEX to first change the case of the edition string constant to lowercase
(the "l" argument), then to concatenate (the * function) this with the string
“ edition” (space and all). A full list of the 37 built-in functions can be found
in [GMS94]. (If the name of a built-in function contains a letter then it ends
with a $) The most useful are *, change.case$ (which takes two arguments,
the first of which is the string to be formatted, the second is "t", "l" or "u"
telling it how to format, with "u" meaning to uppercase), add.period$, which
adds a period to its string argument if it then does not occur before ., ? or !.
The function if$ is useful for controlling flow; it takes three arguments, the first
numeric, the second and third function calls, and executes the first function if
the numeric argument is non-zero, and executes the second function otherwise.
Functions such as missing$ return numeric values which are either 1 or 0.

22

Having changed the formatting of titles we might get more adventurous, and
decide that we want to add a new field type annote, which adds an annotation
to each entry. Looking through the file we decide that the function fin.entry
is the obvious one to alter:

FUNCTION {fin.entry}
{ add.period$
write$
newline$

}

After the period is added we’d like a newline, then our citation key, and then
our annotation. We’ll, after we add annote to the field types defined with ENTRY
earlier in the file, here’s what we might do:

FUNCTION {fin.entry}
{ add.period$
write$
newline$
"\begin{quotation}\noindent{\sc Key:\ }" cite$ * write$
annote missing$
’skip$
{ "\\{\sc Annotation:\ }" write$ annote write$ }

if$
"\end{quotation}" write$
newline$

}

Now, when we’ve finished writing the “normal” entry, we put a period (if nec-
essary) and a newline, then we begin a quotation environment. In the this
we put “Key: ” followed by our citation key, and then, if we have an annote
field, “Annotation: ” followed by its value. Then we finish the quotation
environment.

Have a look inside a .bst file. See if you can understand how a BibTEX run
would flow, using this style.

Oren Patashnik has also written a more comprehensive file called “Designing
BibTEX Styles”, which is available at

/usr/local/teTeX/share/texmf/doc/bibtex/base/btxhak.dvi

and which includes a full description of the different BibTEX style file functions
and commands.

11.1 makebst

Although we’ve now got the bibstyle-changing bug, a cursory glance at a single
.bst file indicates that writing one from scratch would be very difficult indeed.

23

That’s why the makebst program exists. This takes a master file (which ends
with .mbs), interactively determines the format of the bibliographic entities
(which determines which options from the master file to use), and then processes
the resulting file with the docstrip utility to produce a brand spanking new
.bst file.

The program itself is actually a .tex file, and it is run by invoking tex or
latex on it, as in

tex makebst

The program will first ask for the name of the master file, and then for a name
for the output file. After this the program will go through all the available
options, and will finally ask if the master file should be run. If the you say
yes here, the program finishes the processing and produces a .bst file with the
name you have specified. If you say no the program will produce an output file
with the extexnsion .dbj. This is a batch job file which can be edited later if
you want. When you want to produce the .bst file simply run tex on this batch
job file, for example

tex mystyle.dbj

The default option for the .mbs file (merlin.mbs) will give the user quite a
few good options for customization. There are also available various language-
specific .mbs files, the output from which will need to included with other .bst
files as they only deal with language formatting, not the bibliographic format-
ting.

On this system the documentation for makebst is available at

/usr/local/teTeX/share/texmf/doc/latex/custom-bib/makebst.dvi

The file makebst.tex and the .mbs files are located in the directory

/usr/local/teTeX/share/texmf/tex/latex/custom-bib/

Try running

tex /usr/local/teTeX/share/texmf/tex/latex/custom-bib/makebst

using the default merlin.mbs and your own preferences to construct your own
.bst file. Also run makebst on a language file, such as english.mbs, and see the
different questions you are asked, and the different form of the resulting .bst
file.

12 If BibTEX can’t get it perfect for you . . .

After all this, if you can’t get exactly what you want using BibTEX, you can
always use BibTEX to get close to what you want, and then edit the .bbl file
to something that is perfect for you. Be warned, though; if you accidentally

24

run BibTEX again you’ll lose all your customizations! For this reason, it is a
good idea to actually include the information from the BibTEX-produced .bbl
file in your .tex file (in place of the \bibliographystyle and \bibliography
commands) before you edit it.

For example, when creating this file, I had an entry

@misc{ctan,
title = "Comprehensive {\TeX} {A}rchive {N}etwork",
note = "\verb|http://www.ctan.org/|",
key = "{CTAN}"
}

in my file refs.bib. However, even though I specified a four-letter key (the
full acronym of the web cite) within braces, BibTEX still shortens this to three
letters. After my final BibTEX run I then changed the

\bibitem[{CTA}]{ctan}

line in my .bbl file to

\bibitem[{CTAN}]{ctan}

This is also a good way to make your file self-contained, not needing to refer
to a separate .bib file, for example if you need to submit a paper electronically
to a journal.

Of course, wait until the final version of the bibliography (after the final
BibTEX run) before doing this!

References

[CTAN] Comprehensive TEX Archive Network, http://www.ctan.org/.

[GMS94] Michel Goossens, Frank Mittelbach, and Alexander Samarin, The
LATEX companion, Addison-Wesley, Reading, Massachusetts, 1994.

[Lam94] Leslie Lamport, LATEX: a document preparation system, second ed.,
Addison-Wesley, Reading, Massachusetts, 1994.

[MSN] MathSciNet, http://www.ams.org/mathscinet/.

[TUG] TEX Users’ Group, http://www.tug.org/.

25

	Introduction
	I The Basics
	Doing it manually
	Why we should use BibTeX
	The basic ingredients
	Different styles
	The format of the .bib file
	Entry types
	Name considerations
	Multiple names
	Titles and capitalization
	Dealing with LaTeX commands

	II Nifty things
	Cross-references
	Abbreviations and preambles
	Maintaining and updating your database
	showkeys and showtags
	biblist
	Other tools

	Other useful packages
	Changing the way citations appear
	Multiple bibliographies in one document

	Creating and editing style files
	makebst

	If BibTeX can't get it perfect for you …

